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Abstract

The most popular approaches for the simulation of dynamic systems in computer graphics are force based. Internal
and external forces are accumulated from which accelerations are computed based on Newton’s second law of
motion. A time integration method is then used to update the velocities and finally the positions of the object.
A few simulation methods (most rigid body simulators) use impulse based dynamics and directly manipulate
velocities. In this paper we present an approach which omits the velocity layer as well and immediately works
on the positions. The main advantage of a position based approach is its controllability. Overshooting problems
of explicit integration schemes in force based systems can be avoided. In addition, collision constraints can be
handled easily and penetrations can be resolved completely by projecting points to valid locations. We have used
the approach to build a real time cloth simulator which is part of a physics software library for games. This
application demonstrates the strengths and benefits of the method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingPhysically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
RealismAnimation and Virtual Reality

1. Introduction

Research in the field of physically based animation in com-
puter graphics is concerned with finding new methods for
the simulation of physical phenomena such as the dynamics
of rigid bodies, deformable objects or fluid flow. In contrast
to computational sciences where the main focus is on accu-
racy, the main issues here are stability, robustness and speed
while the results should remain visually plausible. There-
fore, existing methods from computational sciences can not
be adopted one to one. In fact, the main justification for
doing research on physically based simulation in computer
graphics is to come up with specialized methods, tailored to
the particular needs in the field. The method we present falls
into this category.

The traditional approach to simulating dynamic objects
has been to work with forces. At the beginning of each time
step, internal and external forces are accumulated. Examples
of internal forces are elastic forces in deformable objects or
viscosity and pressure forces in fluids. Gravity and collision
forces are examples of external forces. Newton’s second law
of motion relates forces to accelerations via the mass. So us-

ing the density or lumped masses of vertices, the forces are
transformed into accelerations. Any time integration scheme
can then be used to first compute the velocities from the ac-
celerations and then the positions from the velocities. Some
approaches use impulses instead of forces to control the an-
imation. Because impulses directly change velocities, one
level of integration can be skipped.

In computer graphics and especially in computer games
it is often desirable to have direct control over positions of
objects or vertices of a mesh. The user might want to attach
a vertex to a kinematic object or make sure the vertex always
stays outside a colliding object. The method we propose here
works directly on positions which makes such manipula-
tions easy. In addition, with the position based approach it is
possible to control the integration directly thereby avoiding
overshooting and energy gain problems in connection with
explicit integration. So the main features and advantages of
position based dynamics are

• Position based simulation gives control over explicit inte-
gration and removes the typical instability problems.
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Figure 1: A known deformation benchmark test, applied here to a cloth character under pressure.

• Positions of vertices and parts of objects can directly be
manipulated during the simulation.

• The formulation we propose allows the handling of gen-
eral constraints in the position based setting.

• The explicit position based solver is easy to understand
and implement.

2. Related Work

The recent state of the art report [NMK∗05] gives a good
overview of the methods used in computer graphics to simu-
late deformable objects, e.g. mass-spring systems, the finite
element method or finite difference approaches. Apart from
the citation of [MHTG05], position based dynamics does not
appear in this survey. However, parts of the position based
approach have appeared in various papers without naming it
explicitly and without defining a complete framework.

Jakobsen [Jak01] built his Fysix engine on a position
based approach. His central idea was to use a Verlet inte-
grator and manipulate positions directly. Because velocities
are implicitly stored by current and the previous positions,
the velocities are implicitly updated by the position manip-
ulation. While he focused mainly on distance constraints,
he only gave vague hints on how more general constraints
could be handled. In this paper we present a fully general
approach which handles general constraints. We also focus
on the important issue of conservation of linear and angu-
lar momenta by position projection. We work with explicit
velocities instead of storing previous positions which makes
damping and friction simulation much easier.

Desbrun [DSB99] and Provot [Pro95] use constraint pro-
jection in mass spring systems to prevent springs from over-
stretching. In contrast to a full position based approach, pro-
jection is only used as a polishing process for those springs
that are stretched too much and not as the basic simulation
method.

Bridson et al. use a traditional force based approach for

cloth simulation [BFA02] and combine it with a geomet-
ric collision resolving algorithm based on positions to make
sure that the collision resolving impulses are kept within sta-
ble bounds. The same holds for the kinematical collision cor-
rection step proposed by Volino et al. [VCMT95].

A position based approach has been used by Clavet et
al. [CBP05] to simulate viscoelastic fluids. Their approach
is not fully position based because the time step appears in
various places of their position projections. Thus, the inte-
gration is only conditionally stable as regular explicit inte-
gration.

Müller et al. [MHTG05] simulate deformable objects
by moving points towards certain goal positions which are
found by matching the rest state to the current state of the
object. Their integration method is the closest to the one we
propose here. They only treat one specialized global con-
straint and, therefore, do not need a position solver.

Fedor [Fed05] uses Jakobsen’s approach to simulate char-
acters in games. His method is tuned to the particular prob-
lem of simulating human characters. He uses several skeletal
representations and keeps them in sync via projections.

Faure [Fau98] uses a Verlet integration scheme by modi-
fying the positions rather than the velocities. New positions
are computed by linearizing the constraints while we work
with the non linear constraint functions directly.

We define general constraints via a constraint function
as [BW98] and [THMG04]. Instead of computing forces as
the derivative of a constraint function energy, we directly
solve for the equilibrium configuration and project positions.
With our method we derive a bending term for cloth which
is similar to the one proposed in [GHDS03] and [BMF03]
but adopted to the point based approach.

In Section 4 we use the position based dynamics approach
for the simulation of cloth. Cloth simulation has been an ac-
tive research field in computer graphics in recent years. In-
stead of citing the key papers of the field individually we
refer the reader to [NMK∗05] for a comprehensive survey.
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3. Position Based Simulation

In this section we will formulate the general position based
approach. With cloth simulation, we will give a particular
application of the method in the subsequent and in the results
section. We consider a three dimensional world. However,
the approach works equally well in two dimensions.

3.1. Algorithm Overview

We represent a dynamic object by a set of N vertices and M
constraints. A vertex i ∈ [1, . . . ,N] has a mass mi, a position
xi and a velocity vi.

A constraint j ∈ [1, . . . ,M] consists of

• a cardinality n j ,
• a function C j : R3n j → R,
• a set of indices {i1, . . . in j}, ik ∈ [1, . . .N],
• a stiffness parameter k j ∈ [0 . . .1] and
• a type of either equality or inequality.

Constraint j with type equality is satisfied if
C j(xi1 , . . . ,xin j

) = 0. If its type is inequality then it is
satisfied if C j(xi1 , . . . ,xin j

) ≥ 0. The stiffness parameter k j

defines the strength of the constraint in a range from zero to
one.

Based on this data and a time step ∆t, the dynamic object
is simulated as follows:

(1) forall vertices i
(2) initialize xi = x0

i ,vi = v0
i ,wi = 1/mi

(3) endfor
(4) loop
(5) forall vertices i do vi ← vi +∆twifext(xi)
(6) dampVelocities(v1, . . . ,vN )
(7) forall vertices i do pi ← xi +∆tvi
(8) forall vertices i do generateCollisionConstraints(xi → pi)
(9) loop solverIterations times
(10) projectConstraints(C1, . . . ,CM+Mcoll ,p1, . . . ,pN )
(11) endloop
(12) forall vertices i
(13) vi ← (pi−xi)/∆t
(14) xi ← pi
(15) endfor
(16) velocityUpdate(v1, . . . ,vN )
(17) endloop

Lines (1)-(3) just initialize the state variables. The core
idea of position based dynamics is shown in lines (7), (9)-
(11) and (13)-(14). In line (7), estimates pi for new locations
of the vertices are computed using an explicit Euler inte-
gration step. The iterative solver (9)-(11) manipulates these
position estimates such that they satisfy the constraints. It
does this by repeatedly project each constraint in a Gauss-
Seidel type fashion (see Section 3.2). In steps (13) and (14),
the positions of the vertices are moved to the optimized es-
timates and the velocities are updated accordingly. This is

in exact correspondence with a Verlet integration step and
a modification of the current position [Jak01], because the
Verlet method stores the velocity implicitly as the difference
between the current and the last position. However, working
with velocities allows for a more intuitive way of manipulat-
ing them.

The velocities are manipulated in line (5), (6) and (16).
Line (5) allows to hook up external forces to the system if
some of the forces cannot be converted to positional con-
straints. We only use it to add gravity to the system in which
case the line becomes vi ← vi +∆tg, where g is the gravita-
tional acceleration. In line (6), the velocities can be damped
if this is necessary. In Section 3.5 we show how to add global
damping without influencing the rigid body modes of the
object. Finally, in line (16), the velocities of colliding ver-
tices are modified according to friction and restitution coef-
ficients.

The given constraints C1, . . . ,CM are fixed throughout the
simulation. In addition to these constraints, line (8) generates
the Mcoll collision constraints which change from time step
to time step. The projection step in line (10) considers both,
the fixed and the collision constraints.

The scheme is unconditionally stable. This is because the
integration steps (13) and (14) do not extrapolate blindly
into the future as traditional explicit schemes do but move
the vertices to a physically valid configuration pi computed
by the constraint solver. The only possible source for insta-
bilities is the solver itself which uses the Newton-Raphson
method to solve for valid positions (see Section 3.3). How-
ever, its stability does not depend on the time step size but
on the shape of the constraint functions.

The integration does not fall clearly into the category
of implicit or explicit schemes. If only one solver iteration
is performed per time step, it looks more like an explicit
scheme. By increasing the number of iterations, however, a
constrained system can be made arbitrarily stiff and the al-
gorithm behaves more like an implicit scheme. Increasing
the number of iterations shifts the bottleneck from collision
detection to the solver.

3.2. The Solver

The input to the solver are the M + Mcoll constraints and
the estimates p1, . . . ,pN for the new locations of the points.
The solver tries to modify the estimates such that they sat-
isfy all the constraints. The resulting system of equations
is non-linear. Even a simple distance constraint C(p1,p2) =
|p1 − p2| − d yields a non-linear equation. In addition, the
constraints of type inequality yield inequalities. To solve
such a general set of equations and inequalities, we use a
Gauss-Seidel-type iteration. The original Gauss-Seidel al-
gorithm (GS) can only handle linear system. The part we
borrow from GS is the idea of solving each constraint inde-
pendently one after the other. However, in contrast to GS,
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solving a constraint is a non linear operation. We repeat-
edly iterate through all the constraints and project the par-
ticles to valid locations with respect to the given constraint
alone. In contrast to a Jacobi-type iteration, modifications to
point locations immediately get visible to the process. This
speeds up convergence significantly because pressure waves
can propagate through the material in a single solver step, an
effect which is dependent on the order in which constraints
are solved. In over-constrained situations, the process can
lead to oscillations if the order is not kept constant.

3.3. Constraint Projection

Projecting a set of points according to a constraint means
moving the points such that they satisfy the constraint. The
most important issue in connection with moving points di-
rectly inside a simulation loop is the conservation of linear
and angular momentum. Let ∆pi be the displacement of ver-
tex i by the projection. Linear momentum is conserved if

∑
i

mi∆pi = 0, (1)

which amounts to conserving the center of mass. Angular
momentum is conserved if

∑
i

ri×mi∆pi = 0, (2)

where the ri are the distances of the pi to an arbitrary com-
mon rotation center. If a projection violates one of these con-
straints, it introduces so called ghost forces which act like ex-
ternal forces dragging and rotation the object. However, only
internal constraints need to conserve the momenta. Collision
or attachment constraints are allowed to have global effects
on the object.

The method we propose for constraint projection con-
serves both momenta for internal constraints. Again, the
point based approach is more direct in that we can directly
use the constraint function while force based methods derive
forces via an energy term (see [BW98, THMG04]). Let us
look at a constraint with cardinality n on the points p1, . . . ,pn
with constraint function C and stiffness k. We let p be the
concatenation [pT

1 , . . . ,pT
n ]T . For internal constraints, C is

independent of rigid body modes, i.e. translation and rota-
tion. This means that rotating or translating the points does
not change the value of the constraint function. Therefore,
the gradient ∇pC is perpendicular to rigid body modes be-
cause it is the direction of maximal change. If the correction
∆p is chosen to be along ∇Cp both momenta are automati-
cally conserved if all masses are equal (we handle different
masses later). Given p we want to find a correction ∆p such
that C(p+∆p) = 0. This equation can be approximated by

C(p+∆p)≈C(p)+∇pC(p) ·∆p = 0. (3)

Restricting ∆p to be in the direction of ∇pC means choos-
ing a scalar λ such that

∆p = λ∇pC(p). (4)

1
p
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p∆

2
p∆

d

1
m
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m

Figure 2: Projection of the constraint C(p1,p2) = |p1 −
p2| − d. The corrections ∆pi are weighted according to the
inverse masses wi = 1/mi.

Substituting Eq. (4) into Eq. (3), solving for λ and substi-
tuting it back into Eq. (4) yields the final formula for ∆p

∆p =− C(p)
|∇pC(p)|2 ∇pC(p) (5)

which is a regular Newton-Raphson step for the iterative so-
lution of the non-linear equation given by a single constraint.
For the correction of an individual point pi we have

∆pi =−s ∇piC(p1, . . . ,pn), (6)

where the scaling factor

s =
C(p1, . . . ,pn)

∑ j |∇p jC(p1, . . . ,pn)|2 (7)

is the same for all points. If the points have individual
masses, we weight the corrections ∆pi by the inverse masses
wi = 1/mi. In this case a point with infinite mass, i.e. wi = 0,
does not move for example as expected. Now Eq. (4) is re-
placed by

∆pi = λwi∇piC(p) yielding

s =
C(p1, . . . ,pn)

∑ j w j|∇p jC(p1, . . . ,pn)|2
(8)

for the scaling factor and for the final correction

∆pi =−s wi∇piC(p1, . . . ,pn). (9)

To give an example, let us consider the distance constraint
function C(p1,p2) = |p1−p2| − d. The derivative with re-
spect to the points are ∇p1C(p1,p2) = n and ∇p2C(p1,p2) =
−n with n = p1−p2

|p1−p2| . The scaling factor s is, thus, s =
|p1−p2|−d

w1+w2
and the final corrections

∆p1 =− w1

w1 +w2
(|p1−p2|−d)

p1−p2

|p1−p2|
(10)

∆p2 = +
w2

w1 +w2
(|p1−p2|−d)

p1−p2

|p1−p2|
(11)

which are the formulas proposed in [Jak01] for the projec-
tion of distance constraints (see Figure 2). They pop up as a
special case of the general constraint projection method.
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We have not considered the type and the stiffness k of
the constraint so far. Type handling is straight forward. If
the type is equality we always perform a projection. If
the type is inequality, the projection is only performed if
C(p1, . . . ,pn) < 0. There are several ways of incorporating
the stiffness parameter. The simplest variant is to multiply
the corrections ∆p by k ∈ [0 . . .1]. However, for multiple
iteration loops of the solver, the effect of k is non-linear.
The remaining error for a single distance constraint after
ns solver iterations is ∆p(1− k)ns . To get a linear relation-
ship we multiply the corrections not by k directly but by
k′ = 1− (1− k)1/ns . With this transformation the error be-
comes ∆p(1−k′)ns = ∆p(1−k) and, thus, becomes linearly
dependent on k and independent of ns as desired. However,
the resulting material stiffness is still dependent on the time
step of the simulation. Real time environments typically use
fixed time steps in which case this dependency is not prob-
lematic.

3.4. Collision Detection and Response

One advantage of the position based approach is how simply
collision response can be realized. In line (8) of the simula-
tion algorithm the Mcoll collision constraints are generated.
While the first M constraints given by the object representa-
tion are fixed throughout the simulation, the additional Mcoll
constraints are generated from scratch at each time step. The
number of collision constraints Mcoll varies and depends on
the number of colliding vertices. Both, continuous and static
collisions can be handled. For continuous collision handling,
we test for each vertex i the ray xi → pi. If this ray enters an
object, we compute the entry point qc and the surface normal
nc at this position. An inequality constraint with constraint
function C(p) = (p− qc) · nc and stiffness k = 1 is added
to the list of constraints. If the ray xi → pi lies completely
inside an object, continuous collision detection has failed at
some point. In this case we fall back to static collision han-
dling. We compute the surface point qs which is closest to
pi and the surface normal ns at this position. An inequality
constraint with constraint function C(p) = (p−qs) ·ns and
stiffness k = 1 is added to the list of constraints. Collision
constraint generation is done outside of the solver loop. This
makes the simulation much faster. There are certain scenar-
ios, however, where collisions can be missed if the solver
works with a fixed collision constraint set. Fortunately, ac-
cording to our experience, the artifacts are negligible.

Friction and restitution can be handled by manipulating
the velocities of colliding vertices in step (16) of the algo-
rithm. The velocity of each vertex for which a collision con-
straint has been generated is dampened perpendicular to the
collision normal and reflected in the direction of the collision
normal.

The collision handling discussed above is only correct for
collisions with static objects because no impulse is trans-
ferred to the collision partners. Correct response for two dy-

namic colliding objects can be achieved by simulating both
objects with our simulator, i.e. the N vertices and M con-
straints which are the input to our algorithm simply represent
two or more independent objects. Then, if a point q of one
objects moves through a triangle p1,p2,p3 of another object,
we insert an inequality constraint with constraint function
C(q,p1,p2,p3) =±(q−p1) · [(p2−p1)× (p3−p1)] which
keeps the point q on the correct side of the triangle. Since
this constraint function is independent of rigid body modes,
it will correctly conserve linear and angular momentum.
Collision detection gets slightly more involved because the
four vertices are represented by rays xi → pi. Therefore the
collision of a moving point against a moving triangle needs
to be detected (see section about cloth self collision).

3.5. Damping

In line (6) of the simulation algorithm the velocities are
dampened before they are used for the prediction of the
new positions. Any form of damping can be used and many
methods for damping have been proposed in the literature
(see [NMK∗05]). Here we propose a new method with some
interesting properties:

(1) xcm = (∑i ximi)/(∑i mi)
(2) vcm = (∑i vimi)/(∑i mi)
(3) L = ∑i ri× (mivi)
(4) I = ∑i r̃ir̃T

i mi
(5) ω = I−1L
(6) forall vertices i
(7) ∆vi = vcm +ω× ri−vi
(8) vi ← vi + kdamping∆vi
(9) endfor

Here ri = xi−xcm, r̃i is the 3 by 3 matrix with the property
r̃iv = ri × v, and kdamping ∈ [0 . . .1] is the damping coeffi-
cient. In lines (1)-(5) we compute the global linear velocity
xcm and angular velocity ω of the system. Lines (6)-(9) then
only damp the individual deviations ∆vi of the velocities vi
from the global motion vcm + ω × ri. Thus, in the extreme
case kdamping = 1, only the global motion survives and the
set of vertices behaves like a rigid body. For arbitrary values
of kdamping, the velocities are globally dampened but without
influencing the global motion of the vertices.

3.6. Attachments

With the position based approach, attaching vertices to static
or kinematic objects is quite simple. The position of the ver-
tex is simply set to the static target position or updated at ev-
ery time step to coincide with the position of the kinematic
object. To make sure other constraints containing this vertex
do not move it, its inverse mass wi is set to zero.
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Figure 4: For bending resistance, the constraint function
C(p1,p2,p3,p4) = arccos(n1 ·n2)−ϕ0 is used. The actual
dihedral angle ϕ is measure as the angle between the nor-
mals of the two triangles.

4. Cloth Simulation

We have used the point based dynamics framework to im-
plement a real time cloth simulator for games. In this section
we will discuss cloth specific issues thereby giving concrete
examples of the general concepts introduced in the previous
section.

4.1. Representation of Cloth

Our cloth simulator accepts as input arbitrary triangle
meshes. The only restriction we impose on the input mesh
is that it represents a manifold, i.e. each edge is shared by at
most two triangles. Each node of the mesh becomes a simu-
lated vertex. The user provides a density ρ given in mass per
area [kg/m2]. The mass of a vertex is set to the sum of one
third of the mass of each adjacent triangle. For each edge,
we generate a stretching constraint with constraint function

Cstretch(p1,p2) = |p1−p2|− l0,

stiffness kstretch and type equality. The scalar ł0 is the initial
length of the edge and kstretch is a global parameter provided
by the user. It defines the stretching stiffness of the cloth. For
each pair of adjacent triangles (p1,p3,p2) and (p1,p2,p4)
we generate a bending constraint with constraint function

Cbend(p1,p2,p3,p4) =

acos
(

(p2−p1)× (p3−p1)
|(p2−p1)× (p3−p1)|

· (p2−p1)× (p4−p1)
|(p2−p1)× (p4−p1)|

)
−ϕ0,

stiffness kbend and type equality. The scalar ϕ0 is the ini-
tial dihedral angle between the two triangles and kbend is a
global user parameter defining the bending stiffness of the
cloth (see Figure 4). The advantage of this bending term
over adding a distance constraint between points p3 and p4
or over the bending term proposed by [GHDS03] is that it is
independent of stretching. This is because the term is inde-
pendent of edge lengths. This way, the user can specify cloth
with low stretching stiffness but high bending resistance for
instance (see Figure 3).

Eqns. (10) and (11) define the projection for the stretch-
ing constraints. In the appendix A we derive the formulas to
project the bending constraints.
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Figure 5: Constraint function C(q,p1,p2,p3) = (q− p1) ·
n− h makes sure that q stays above the triangle p1,p2,p3
by the the cloth thickness h.

4.2. Collision with Rigid Bodies

For collision handling with rigid bodies we proceed as de-
scribed in Section 3.4. To get two-way interactions, we apply
an impulse mi∆pi/∆t to the rigid body at the contact point,
each time vertex i is projected due to collision with that
body. Testing only cloth vertices for collisions is not enough
because small rigid bodies can fall through large cloth tri-
angles. Therefore, collisions of the convex corners of rigid
bodies against the cloth triangles are also tested.

4.3. Self Collision

Assuming that the triangles all have about the same size,
we use spatial hashing to find vertex triangle collisions
[THM∗03]. If a vertex q moves through a triangle p1, p2,
p3, we use the constraint function

C(q,p1,p2,p3) = (q−p1) ·
(p2−p1)× (p3−p1)
|(p2−p1)× (p3−p1)|

−h,

(12)
where h is the cloth thickness (see Figure 5). If the vertex
enters from below with respect to the triangle normal, the
constraint function has to be

C(q,p1,p2,p3) = (q−p1) ·
(p3−p1)× (p2−p1)
|(p3−p1)× (p2−p1)|

−h

(13)
to keep the vertex on the original side. Projecting these con-
straints conserves linear and angular momentum which is es-
sential for cloth self collision since it is an internal process.
Figure 6 shows a rest state of a piece of cloth with self col-
lisions. Testing continuous collisions is insufficient if cloth
gets into a tangled state, so methods like the ones proposed
by [BWK03] have to be applied.

4.4. Cloth Balloons

For closed triangle meshes, overpressure inside the mesh can
easily be modeled (see Figure 7). We add an equality con-
straint concerning all N vertices of the mesh with constraint
function

C(p1, . . . ,pN) =

(
ntriangles

∑
i=1

(pt i
1
×pt i

2
) ·pt i

3

)
− kpressureV0

(14)
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Figure 3: With the bending term we propose, bending and stretching are independent parameters. The top row shows
(kstretching,kbending) = (1,1), ( 1

2 ,1) and ( 1
100 ,1). The bottom row shows (kstretching,kbending) = (1,0), ( 1

2 ,0) and ( 1
100 ,0).

Figure 6: This folded configuration demonstrates stable self
collision and response.

and stiffness k = 1 to the set of constraints. Here t i
1, t

i
2 and t i

3
are the three indices of the vertices belonging to triangle i.
The sum computes the actual volume of the closed mesh. It
is compared against the original volume V0 times the over-
pressure factor kpressure. This constraint function yields the
gradients

∇piC = ∑
j:t j

1=i

(pt j
2
×pt j

3
)+ ∑

j:t j
2=i

(pt j
3
×pt j

1
)+ ∑

j:t j
3=i

(pt j
1
×pt j

2
)

(15)
These gradients have to be scaled by the scaling factor given
in Eq. (7) and weighted by the masses according to Eq. (9)
to get the final projection offsets ∆pi.

5. Results

We have integrated our method into Rocket [Rat04], a game-
like environment for physics simulation. Various experi-

Figure 7: Simulation of overpressure inside a character.

ments have been carried out to analyze the characteristics
and the performance of the proposed method. All test sce-
narios presented in this section have been performed on a
PC Pentium 4, 3 GHz.

Independent Bending and Stretching. Our bending term
only depends on the dihedral angle of adjacent triangles, not
on edge lengths, so bending and stretching resistances can
be chosen independently. Figure 3 shows a cloth bag with
various stretching stiffnesses, first with bending resistance
enabled and then disabled. As the top row shows, bending
does not influence stretching resistance.

Attachments with Two Way Interaction. We can sim-
ulate both, one way and two way coupled attachment con-
straints. The cloth stripes in Figure 8 are attached via one
way constraints to the static rigid bodies at the top. In addi-
tion, two way interaction is enabled between the stripes and
the bottom rigid bodies. This configuration results in realis-
tically looking swing and twist motions of the stripes. The
scene features 6 rigid bodies and 3 pieces of cloth which are
simulated and rendered with more than 380 fps.
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Figure 8: Cloth stripes are attached via one way interaction
to static rigid bodies at the top and via two way constraints
to rigid bodies at the bottom.

Real Time Self Collision. The piece of cloth shown in
Figure 6 is composed of 1364 vertices and 2562 triangles.
The simulation runs at 30 fps on average including self col-
lision detection, collision handling and rendering. The effect
of friction is shown in Figure 9 where the same piece of cloth
is tumbling in a rotating barrel.

Tearing and stability. Figure 10 shows a piece of cloth
consisting of 4264 vertices and 8262 triangles that is torn
open by an attached cube and finally ripped apart by a
thrown ball. This scene is simulated and rendered with 47 fps
on average. Tearing is simulated by a simple process: When-
ever the stretching of an edge exceeds a specified threshold
value, we select one of the edge’s adjacent vertices. We then
put a split plane through that vertex perpendicular to the edge
direction and split the vertex. All triangles above the split
plane are assigned to the original vertex while all triangles
below are assigned to the duplicate. Our method remains sta-
ble even in extreme situations as shown in Figure 1, a scene
inspired by [ITF04]. An inflated character model is squeezed
through rotating gears resulting in multiple constraints, col-
lisions and self collisions acting on single cloth vertices.

Complex Simulation Scenarios. The presented method
is especially suited for complex simulation environments
(see Figure 12). Despite the extensive interaction with an-
imated characters and geometrically complex game levels,
simulation and rendering of multiple pieces of cloth can still
be done at interactive speed.

6. Conclusions

We have presented a position based dynamics framework
that can handle general constraints formulated via constraint
functions. With the position based approach it is possible to
manipulate objects directly during the simulation. This sig-
nificantly simplifies the handling of collisions, attachment
constraints and explicit integration and it makes direct and
immediate control of the animated scene possible.

We have implemented a robust cloth simulator on top of
this framework which provides features like two way inter-
action of cloth with rigid bodies, cloth self collision and re-
sponse and attachments of pieces of cloth to dynamic rigid
bodies.

7. Future Work

A topic we have not treated in this paper is rigid body simu-
lation. However, the approach we presented could quite eas-
ily be extended to handle rigid objects as well. Instead of
computing a set of linear and angular impulses for the res-
olution of collisions as regular rigid body solvers typically
do, movements and rotations would be applied to the bod-
ies at the contact points and the linear and angular velocities
would have to be adjusted accordingly after the solver has
completed.

c© The Eurographics Association 2006.



M. Müller et al. / Position Based Dynamics

Figure 9: Influenced by collision, self collision and friction, a piece of cloth tumbles in a rotating barrel.

Figure 10: A piece of cloth is torn open by an attached cube and ripped apart by a thrown ball.

Figure 11: Three inflated characters experience multiple collisions and self collisions.

Figure 12: Extensive interaction between pieces of cloth and an animated game character (left), a geometrically complex game
level (middle) and hundreds of simulated plant leaves (right).
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Appendix A:

Gradient of the Normalized Cross Product

Constraint functions often contain normalized cross products. To de-
rive the projection corrections, the gradient of the constraint func-
tion is needed. Therefore it is useful to know the gradient of a nor-
malized cross product with respect to both arguments. Given the
normalized cross product n = p1×p2

|p1×p2 | , the derivative with respect to
the first vector is

∂n
∂p1

=




∂nx
∂ p1x

∂nx
∂ p1y

∂nx
∂ p1z

∂ny
∂ p1x

∂ny
∂ p1y

∂ny
∂ p1z

∂nz
∂ p1x

∂nz
∂ p1y

∂nz
∂ p1z


 (16)

=
1

|p1×p2|







0 p2z −p2y
−p2z 0 p2x
p2y −p2x 0


+n(n×p2)T




(17)

Shorter and for both arguments we have

∂n
∂p1

=
1

|p1×p2|
(−p̃2 +n(n×p2)T )

(18)

∂n
∂p2

=− 1
|p1×p2|

(−p̃1 +n(n×p1)T )
(19)

(20)

where p̃ is the matrix with the property p̃x = p×x.

Bending Constraint Projection

The constraint function for bending is C = arccos(d)−ϕ0, where
d = n1 ·n2 = nT

1 n2. Without loss of generality we set p1 = 0 and get
for the normals n1 = p2×p3

|p2×p3| and n2 = p2×p4
|p2×p4 | . With d

dx arccos(x) =

− 1√
1−x2

we get the following gradients:

∇p3C =− 1√
1−d2

(
(

∂n1

∂p3

)T

n2) (21)

∇p4C =− 1√
1−d2

(
(

∂n2

∂p4

)T

n1) (22)

∇p2C =− 1√
1−d2

(
(

∂n1

∂p2

)T

n2 +
(

∂n2

∂p2

)T

n1) (23)

∇p1C =−∇p2C−∇p3C−∇p4C (24)

Using the gradients of normalized cross products, first compute

q3 =
p2×n2 +(n1×p2)d

|p2×p3| (25)

q4 =
p2×n1 +(n2×p2)d

|p2×p4| (26)

q2 =−p3×n2 +(n1×p3)d
|p2×p3| − p4×n1 +(n2×p4)d

|p2×p4| (27)

q1 =−q2−q3−q4 (28)

Then the final correction is

∆pi =− 4wi

∑ j w j

√
1−d2(arccos(d)−ϕ0)

∑ j |q j|2 qi (29)
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